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Abstract
Background: cancer diagnosis, treatment and management are possible through 
the usage of multidisciplinary platforms.  Herein, we present a unique Artificial 
Intelligent (AI)-enabled liquid biopsy platform that can provide sensitive and 
specific signals for the purpose of multi-cancer early detection (MCED), diagnosis, 
and therapy selection to minimal residual disease (MRD) and monitoring.
Methods: We utilized the Caris database composed of genetic data from over 
350,000 tissue Whole Exome Sequencing (WES)/Whole Trasnscriptome 
Sequencing (WTS) of solid malignancies to train deep learning neural networks 
aimed at uncovering the molecular drivers of cancer. Additionally, WES/WTS 
sequencing was performed on 4,276 samples to develop a set of cell free DNA 
(cfDNA) specific features. One hundred and sixty-six of these samples had paired 
tissue sequenced WES/WTS to facilitate liquid biopsy variant validation.  These 
features were organized into 'pillars' and integrated into the Assure Blood-based 
Cancer Detection AI (ABCDai) for early detection (binary classifier with 20-fold 
cross-validation) and tissue-of origin determination (multiclass classifier with 20-
fold cross-validation). Subsequently, these models were evaluated using survival 
analysis on MRD and Monitoring samples.
Results: The Assure workflow detected CHIP mutations in 27% of samples, many 
of which were in clinically actionable genes (Figure 1). By leveraging CHIP 
subtraction, the detection of driver mutations from blood collected within 30 days 
of matched tumor tissue showed high concordance, with a Positive Percent 
Agreement (PPA)of 93.8% and a Positive predictive value (PPV) of 96.8%. Assure 
Plasma-derived features were independently significant for MCED (examples in 
Figure 3). When combined with tissue-identified features through ABCDai, we 
achieved an overall sensitivity of 87.4% at 99.5% specificity (Figure 4). ABCDai 
applied to plasma extracted before (MRD) and after (Monitoring) therapy showed 
significant stratification (p<0.05) for patient Disease-Free Survival (DFS), even 
when controlling for common clinicopathological variables (Figure 5). Tissue of 
origin is focused on those tumor types that are most common and thus provide 
the most utility (breast, CRC, gastric, H&N, NSCLC, ovarian, pancreatic, and 
prostate cancers).  Among these cancers, we were able to determine the tissue of 
origin for 100% of the positive calls with an accuracy within the top three 
predictions of 84%. 

Conclusions
• We demonstrate that a comprehensive whole-exome and transcriptome-

wide liquid biopsy is a versatile solution to address the entire continuum of 
blood-based clinical applications, including early detection and potential 
screening for cancer, molecularly based cancer diagnosis, monitoring of 
MRD and recurrence in the early-stage curative approach setting, and 
precision selection of therapy for patients with advanced metastatic 
disease with targetable driver mutations.

• Our approach is unique in that we performed high-depth sequencing of 
white blood cells in addition to cfDNA/RNA from plasma. This provides an 
important capability to detect mutations derived from clonal 
hematopoiesis. Equally importantly, this approach also allows for the 
detection of  incidental germline alterations that can have both therapeutic 
and familial implications. 

• We demonstrated the detection of malignancies at their earliest stages 
across various solid tumor types with a PPV higher than any other clinical 
platform to date.

• Our results illustrate the application of our liquid biopsy by leveraging a 
model built to predict MCED in the MRD setting. Patients who were MRD-
positive had significantly inferior DFS than those who were MRD-negative. 
Importantly, the approach employed to detect MRD does not rely on a 
priori genomic information from the primary tumor. 

• Proper clinical intervention requires knowledge of the tissue of origin, and 
the molecular information provided by Caris Assure can assist in this 
determination as ABCDai was able to determine the tissue of origin for 
100% of the positive calls with a top three accuracy of 84%.
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MV Hazard Ratio 95% Confidence Interval p-value
Model Prediction

Recurrence Free 1.00 - -
Recurrence 6.44 (3.33-12.45) <0.001

Patient Age at Diagnosis
<50* 1.00 - -
50-59 1.43 (0.42-4.88) 0.56
60-69 3.52 (1.15-10.75) 0.03
>=70 1.89 (0.60-5.93) 0.28

Gender
Male 1.00 - -
Female 0.51 (0.26-0.99) 0.05

BMI Group
Healthy Weight 1.00 - -
Underweight 1.86 (0.55-6.33) 0.32
Overweight 0.41 (0.21-0.82) 0.01
Obesity 0.25 (0.09-0.70) 0.01

Stage
1 1.00 - -
2 1.19 (0.45-3.13) 0.72
3|4 2.86 (1.24-6.61) 0.01

MV Hazard Ratio 95% Confidence Interval p-value
Model Prediction

Recurrence Free 1.00 - -
Recurrence 1.96 (1.04-3.68) 0.04

Patient Age at Diagnosis
<50* 1.00 - -
50-59 1.38 (0.46-4.17) 0.56
60-69 3.05 (1.14-8.11) 0.03
>=70 2.48 (0.89-6.93) 0.08

Gender
Male 1.00 - -
Female 0.77 (0.41-1.43) 0.40

BMI Group
Healthy Weight 1.00 - -
Underweight 3.15 (0.88-11.23) 0.08
Overweight 0.49 (0.25-0.96) 0.04
Obesity 0.55 (0.25-1.22) 0.14

Stage
1 1.00 - -
2 2.09 (0.82-5.31) 0.12
3|4 3.38 (1.45-7.87) <0.001

Patient Characteristics Cancer Origin Tissue
Early Detection

n = 4,276
MRD

n = 446
Monitoring

n = 335
Early Detection

n = 4,276
MRD

n = 446
Monitoring

n = 335

Patient Age at Diagnosis Bladder Cancer, (%) 61 (1.4) 5 (1.1) 4 (1.1)
Median Age (range), 
years 61 (19-95) 62 (21-88) 62 (30-88) Brain Cancer, (%) 14 (0.3) - -
Age <50, n(%) 811 (19.0) 84 (18.7) 61 (17.2) Breast Carcinoma, (%) 94 (2.2) 204 (45.4) 159 (44.8)
Age 50-59, n(%) 1,134 (26.5) 112 (24.9) 86 (24.2) Colorectal Cancer, (%) 226 (5.3) 109 (24.3) 83 (23.4)
Age 60-69, n(%) 1,396 (32.6) 134 (29.8) 111 (31.3) Cancer of Unknown Primary, (%) 18 (0.4) - -
Age >=70, n(%) 932 (21.8) 119 (26.5) 97 (27.3) Cholangiocarcinoma, (%) 70 (1.6) 3 (0.7) 2 (0.6)
Unknown, n(%) 3 (0.1) - - Esophageal Cancer, (%) 58 (1.4) - -

Gender Gastric Cancer, (%) 518 (12.1) 8 (1.8) 6 (1.7)
Male, n(%) 2,082 (48.7) 97 (21.6) 79 (22.3) Head and Neck Cancer, (%) 115 (2.7) 1 (0.2) -
Female, n(%) 2,194 (51.3) 352 (78.4) 276 (77.7) Kidney Cancer, (%) 278 (6.5) - -

Stage Liver Cancer, (%) 16 (0.4) - -
I, n(%) 596 (13.9) 123 (27.4) 95 (26.8) Lung Cancer, (%) 191 (4.5) 17 (3.8) 14 (3.9)
II, n(%) 319 (7.5) 149 (33.2) 111 (31.3) Lymphoma, (%) 32 (0.7) - -
III, n(%) 344 (8.0) 169 (37.6) 142 (40.0) Melanoma, (%) 26 (0.6) - -
IV, n(%) 1,170 (27.4) 2 (0.4) 2 (0.6) Neuroendocrine Tumors, (%) 13 (0.3) - -
Normal, n(%) 1,847 (43.2) - - Normal, (%) 1,847 (43.2) - -
Unknown, n(%) - 6 (1.3) 5 (1.4) Other, (%) 40 (0.9) 12 (2.7) 6 (1.7)

Body Mass Index (BMI)
Other Female Genital Tract 
Malignancy, (%) 321 (7.5) 20 (4.5) 19 (5.4)

Median BMI (range) - 25 (15-49) 25 (15-49) Ovarian Cancer, (%) 63 (1.5) 36 (8.0) 31 (8.7)
Underweight, n(%) - 11 (2.4) 8 (2.3) Pancreatic Cancer, (%) 94 (2.2) 27 (6.0) 25 (7.0)
Healthy Weight, n(%) - 203 (45.2) 166 (46.8) Prostate Cancer, (%) 79 (1.8) 1 (0.2) 1 (0.3)
Overweight, n(%) - 149 (33.2) 113 (31.8) Small Bowel Cancer, (%) 40 (0.9) 6 (1.3) 4 (1.1)
Obesity, n(%) - 81 (18.0) 66 (18.6) Thyroid Cancer, (%) 30 (0.7) - 1 (0.3)
Unknown, n(%) - 5 (1.1) 2 (0.6) Uveal Melanoma, (%) 32 (0.7) - -

Relapse Predicted (N=35)

No Relapse Predicted (N=312)

Logrank test statistic = 29.06, p<0.005
Univariate Hazard Ratio = 4.59, p<0.005

Relapse Predicted (N=47)

No Relapse Predicted (N=239)

Logrank test statistic = 8.21, p<0.005
Univariate Hazard Ratio = 2.34, p<0.01

CHIP Identification vital for therapy selection

Fig. 1 -For each gene listed, the value shown is the percentage of the time that the variant is of CH 
origin. Variants Genes that are clinically relevant in solid tumors are marked in red. 

Features powering the Assure Blood-based Cancer Detection AI - ABCDai 

Fig. 2 - Pillars are derived from traditional tissue based bioinformatic features (left side) or from 
biologically relevant characteristics unique to cfDNA sequencing (right side). Machine learning 
models are trained separately using features from each pillar, and subsequently, these features are 
combined to train a comprehensive 'Panome' model and a ABCDai final layer that provides the final 
call and risk score.
Diverse patient and sample data used for development and validation

Table 1– Demographic and tumor origin distribution tables for the ABCDai, MRD and Monitoring cohorts.

cfDNA derived features show significant cancer signal
A B C

Fig. 3- A) Median fragment 
length across approximate 
5MB bins for normal 
samples vs. late-stage cancer 
samples. B) Normalized 
Transcriptionome Entropy 
for CDK12 shows a 
significant difference after 
multiple hypothesis 
correction C) The AATT 
Motifs shown to have 
significance between NSCLC 
and Normal cfDNA (1).

ABCDai detects cancer across a wide variety of cancer types and stages

Fig. 4 - Sensitivity of ABCDai by Tumor Type and Stage. Bar plots representing the ABCDai sensitivity 
on aggregated held-out folds from 20-fold cross-validation.

ABCDai identifies residual disease and stratifies recurring patients

Monitoring

MRD

Fig. 5 - Kaplan-Meier survival curves depict MRD (top), or Monitoring (bottom) samples categorized 
into risk groups using an ABCDai pillar's model. Multivariate (MV) hazard ratios in tables account for 
common clinicopathological variables, with an event defined as patient relapse or death post-surgery. 

ABCDai adresses important clinical needs
Abstract ID: 2300jabraham@carisls.com  |

Sensitivity PPV Specificity
Metastatic, Driver 

SNV/INDEL Variants 93.8 96.8 100

Multi-cancer Early 
Detection 87.4 99.5 99.5

Univariate HR Multivariate HR
Logrank 
Statistic

MRD 4.59 6.44 29.06
Monitoring 2.34 1.96 8.21

Fig. 6 – Performance Metrics of the ABCDai platform towards selection of molecularly targeted 
therapies, MCED, and MRD and monitoring. (HR): Hazard Ratio.

(-): reference class

(-): reference class
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