

Molecular profile of uterine papillary serous carcinoma compared to ovarian serous carcinoma: Is it the same disease at different sites?

Haider. Mahdi¹, Joanne Xiu², Sandeep. K. Reddy² and R. DeBernardo¹ **Cleveland Clinic**

¹The Cleveland Clinic, Cleveland, OH, ²Caris Life Sciences, Phoenix, AZ

Abstract

Objective: To compare the molecular profile of a large cohort of uterine papillary serous carcinoma (UPSC) and ovarian serous carcinoma (EOC-S).

Methods: 240 UPSC and 1587 EOC-S tumors were evaluated using a commercial multiplatform profiling service (CARIS Life Sciences, Phoenix, AZ). Specific testing performed included a combination of gene sequencing (Sanger, NGS), protein expression (IHC) and gene amplification (CISH or FISH).

Results: TP53 was the most commonly mutated gene in both UPSC and EOC-S (76% vs. 69%, p=0.03). UPSC were more likely to have mutation in PIK3CA (29% vs. 2%, p<0.001), FBXW7 (12% vs. 1%, p<0.001), KRAS (9% vs. 5%, p<0.001) PTEN (7% vs. 1%, p<0.001), and CTNNB1 (2% vs. 0%, p<0.001) compared to EOC-S. On the other hand, EOC-S were more likely to harbor mutation in BRCA1 (20% vs. 9%) and BRCA2 (18% vs. 6%), however this difference was not statistically significant (p=0.12 and 0.08 respectively). No difference in the rate of mutation of APC, (3% v. 3%) ATM (3% vs. 2%), BRAF (1% vs. 1%) and AKT1 (1% vs. 0.2%) was identified (p<0.05 for all). IHC MRP-1 (88% vs. 83%, p=0.07), PD-1 (68% vs. 68%, p=0.9), PTEN (56% vs. 58%, p=0.22), TOPO1 (36% vs. 40%, p=0.06) and PR (32% vs. 30%, p=0.39), were overexpressed in both USC and EOC-S. MGMT (80% vs. 53%, p<0.001) was more expressed in EOC-S than UPSC. Whereas, IHC TOP2A (89% vs. 69%, p<0.001), ER (60% vs. 53%, p=0.0008), RRM1 (35% vs. 27%, p<0.001), HER2 ISH (17% vs. 4%, p<0.001) and Her2/neu (10% vs. 2%, p<0.001) were more expressed in UPSC than EOC-S respectively.

Conclusion: UPSC have a distinct mutation profile indicating higher activity of PI3K/PTEN/MTOR pathway but no difference in alteration of homologous recombination pathway compared to EOC-S. Over-expression of TOPO2A and other markers needs to be correlated with outcome and response to chemotherapy.

Background

- Uterine papillary serous carcinoma (UPSC) is a clinically aggressive subtype of endometrial carcinoma accounting for 10% of endometrial cancer diagnoses and represents up to 40% of endometrial cancer-associated deaths.
- o Comprehensive surgical staging or debulking surgery similar to epithelial ovarian cancer is recommended for patients diagnosed with UPSC. Following surgery, adjuvant chemotherapy has become the standard treatment for UPSC.
- UPSC is histologically indistinguishable from high-grade serous ovarian carcinoma.
- o Prior studies showed similarities in response to platinum-based chemotherapy and applicability of platinum-free interval between recurrent UPSC and serous ovarian carcinoma.
- o Given the resemblances in histologic and clinical behavior between UPSC and serous ovarian carcinoma, one would assume these two cancers share a similar molecular profile.
- o This is an important question as it may elucidate the molecular basis for this aggressive behavior and may have implications on the development of targeted treatment modalities
- o In a prior study using The Cancer Genome Atlas (TCGA) data, the molecular profile of 66 patients with UPSC was compared to that of serous ovarian carcinoma and basal-like breast cancer. The authors reported some similarities between the three cancer types.
- o The objective of this study was to compare the molecular profile of a large cohort of patients with UPSC to that of serous ovarian carcinoma using a commercial multiplatform profiling service (Caris Life Sciences, Phoenix, AZ).

Methods

- Retrospective data analysis was done on uterine papillary serous tumors and ovarian serous carcinomas that were submitted to a commercial referral diagnostic laboratory (Caris Life Sciences, Phoenix, AZ) for molecular profiling aimed to provide therapeutic information based on tumor biomarkers.
- o A multiplatform approach was taken that included sequencing, immunohistochemistry (IHC) and FISH/CISH. Association studies were performed by two-tailed chi-square or Fisher Exact tests.

Results

Patient Characteristics:

EOC-S		UPSC			
Case Total N	5335	Case Total N	628		
Cases with NGS	1600	Cases with NGS	241		
Average Age (Range)	62(11-97)	Average Age (Range) 68(4			
Specimen site EOC-S	N	Specimen site UPSC	N		
Ovary	1655	Corpus Uteri	384		
Peritoneum	1779	Peritoneum	105		
Colon & Rectum	316	Lymph Nodes	28		
Pelvis	278	Ovary	22		
Connective & Soft Tissue	249	Abdomen	13		
Lymph nodes	234	Pelvis	13		
Abdomen	190	Vagina & Labia	13		
Fallopian tube	108	Connective & Soft Tissue	9		
Small Intestine	94	Colon 9			
Liver	80	Liver 6			
Other	352	Other 26			

Results

Figure 1: Select IHC and ISH marker comparisons between UPSC and EOC. Bars indicate distribution frequencies (%). Numbers indicate Relative Risk of the comparison (95% Confidence Intervals). * and bold indicate p values < 0.05

Figure 2: Additional IHC and ISH (in situ hybridization) biomarkers comparisons between UPSC and EOC-S along with associated therapies. (* and bold indicate p<0.05)

		UPSC		EOC-S	
Associated therapies	Biomarkers	N/Total N	Frequency	N/Total N	Frequency
Fluoropyrimidines	Low IHC-TS	223/545	41%	1244/2809	44%
mTor inhibitors	Low IHC-PTEN	275/622	44%	2192/5259	42%
Topotecan, irinotecan	IHC-TOPO1	194/542	36%	1923/4804	40%
platinum agents	Low IHC-ERCC1	245/301	81%	2792/3594	78%
Taxanes	IHC-SPARC	85/616	14%	776/4936	16%
	IHC-TLE3	48/389	12%	474/4544	10%
	Low IHC-TUBB3 *	216/275	79%	3615/3989	91%
EGFR targeted therapies	FISH-EGFR	16/193	8%	10/95	11%
multidrug resistance	IHC-PGP	39/504	8%	431/4623	9%
Anthracyclines	FISH-TOP2A	4/59	7%	14/330	4%
	IHC-TOPO2A*	435/488	89%	2989/4315	69%
Temozolomide	Low IHC-MGMT*	286/615	47%	989/5069	20%
Gemcitabine	Low IHC-RRM1*	358/548	65%	3548/4849	73%

Figure 3: Gene mutation comparisons between UPSC and EOC. Shown are genes with significantly different mutation rates between UPSC and EOC-S. Bars indicate distribution frequencies (%). Numbers indicate Relative Risk of the comparison (95% Confidence Intervals). * indicates p values < 0.05

Figure 4: Gene mutations that are NOT significantly different between UPSC and EOC-S (all p>0.05)

		UPSC		EOC-S	
Pathway	Biomarkers	N/Total N	Frequency	N/Total N	Frequency
	BRCA1	3/33	9.10%	72/360	20.00%
DNA Panair	BRCA2	2/32	6.30%	65/356	18.30%
DNA Repair	ATM	7/240	2.90%	30/1581	1.90%
	MLH1	0/241	0	4/1597	0.30%
Wnt	APC	7/241	2.90%	49/1595	3.10%
HGF/cMET	cMET	6/240	2.50%	48/1595	3.00%
	NRAS	3/305	1.00%	16/1907	0.80%
	ERBB4	2/240	0.80%	5/1592	0.30%
МАРК	GNAQ	0/123	0	1/790	0.10%
IVIAPK	BRAF	2/365	0.50%	28/2182	1.30%
	PTPN11	0/241	0	3/1596	0.20%
	GNA11	0/179	0	3/1254	0.20%
	PDGFRA	1/239	0.40%	2/1584	0.10%
SCF/cKIT	cKIT	3/307	1.00%	11/1922	0.60%
	FLT3	2/241	0.80%	4/1590	0.30%
DISK/Akt/maTou	AKT1	2/238	0.80%	4/1591	0.30%
PI3K/Akt/mTor	STK11	3/224	1.30%	20/1478	1.40%
JAK/STAT	JAK3	5/241	2.10%	35/1594	2.20%
	RB1	4/240	1.70%	9/1580	0.57%
	ABL1	4/229	1.70%	11/1530	0.70%
	VHL	1/212	0.50%	6/1460	0.40%
	SMAD4	1/240	0.40%	8/1589	0.50%
Oth and	FGFR1	1/240	0.40%	0/1597	0
Others	NOTCH1	0/236	0	4/1551	0.30%
	RET	0/239	0	4/1583	0.30%
	CSF1R	0/239	0	3/1590	0.20%
	CDH1	0/241	0	2/1595	0.10%
	SMARCB1	0/240	0.00%	1/1586	0.10%

Conclusions

- Both uterine and ovarian serous carcinoma had high rates of TP53 mutation.
- Our study shows significantly higher activation of PI3K/Akt/mTor pathway in UPSC as manifested by more frequent PIK3CA, FBXW7 and PTEN mutations.
- Patients with UPSC were more likely to show Her2/neu overexpression /amplification as well as cMET overexpression compared to EOC.
- In addition, multiple targetable cancer pathways including FGFR, hedgehog and angiogenesis pathways are more activated in endometrial cancer than ovarian cancer.
- While both cancers show significant hormone receptor expression, ovarian cancers have higher androgen receptor expression and endometrial cancers have higher estrogen receptor expression.
- Ovarian serous carcinoma had a higher rate of alterations in the homologous recon. pathway than UPSC.
- These data suggest a potential benefit of targeted therapy directed towards multiple cancer pathways including PI3K/AKT/mTOR pathway, Her2 and cMET in patients with
- Clinical trials are needed to assess the efficacy of therapies targeted these pathways on clinical outcomes

References

- L. Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature. 2013
- Janku F, et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol
- Janku F, et al. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J Clin Oncol. 2012 Mar 10;30(8):777-82.