# **Comprehensive profiling of renal medullary and collecting duct carcinomas**

Thai H. Ho<sup>1</sup>, Jeffrey Swensen<sup>2</sup>, John McGill<sup>3</sup>, Anatole Gazalpour<sup>2</sup>, Ondrej Hes<sup>4</sup>, Melissa Stanton<sup>1</sup>, Monika Joshi<sup>5</sup>, Souzan Sanati<sup>6</sup>, Priyanka Purnanada<sup>2</sup>, David Arguello<sup>2</sup>, Sandeep Reddy<sup>2</sup>, Zoran Gatalica<sup>2</sup> <sup>1</sup>Mayo Clinic, Scottsdale, AZ; <sup>2</sup>Caris Life Sciences, Phoenix, AZ; <sup>3</sup>Miraca Life Sciences, Phoenix, AZ; <sup>4</sup>Charles University, Plzen, Czech Republic; <sup>5</sup>Penn State Hershey Cancer Institute, Hershey, PA; <sup>6</sup>Washington University, St. Louis, MO

## Abstract #572

<u>Background</u>: Renal medullary carcinoma (RMC) is an aggressive malignancy affecting predominantly young African Americans with sickle cell trait (SCT) or disease (SCD), while a pathologically similar collecting duct carcinoma (CDC) affects patients without sickle cell trait. Clinical responses to chemotherapy and IL-2 in RMC/CDC are poor and novel therapies are needed.

Design: 9 patients with RMC (ages 13-58 y. o., all male) and 15 patients (ages 26-74 y. o., M:F=13:2) with collecting duct carcinoma (CDC) were studied. Expression of PD-L1 was evaluated with 2 monoclonal antibodies (SP142 and SP263) and tumor infiltrating lymphocytes (TIL) were evaluated for PD1 expression (MRQ-22 antibody) using immunohistochemistry (IHC). Additional studies included ALK protein expression (D5F3 antibody), gene translocation (break apart FISH), next generation sequencing (NGS), and microsatellite instability (MSI).

<u>Results</u>: Cancer cell PD-L1 expression above the threshold ( $\geq 2+$ ,  $\geq 5\%$ ) was seen in 7/9 RMC and 5/13 CDC cases. Concordance between 2 PD-L1 antibodies was 94.4%. PD-1+ TIL were absent in 6/18 cases and variably present in 12/18 cases (from 1 to >15 TIL/40x power field). No MSI was detected in any of the cases tested (0/6). No case expressed ALK protein, but one case of CDC showed ALK gene re-arrangement. Mutations were identified in SMARCB1, FH, TP53 (3x), ATM, BRCA2, CHEK2 (2x), NF2 (3x), SETD2, and CDKN2A. No mutations in VHL or KDR were detected. One patient with RMC (and SCT) achieved complete clinical remission after treatment with bevacizumab plus paclitaxel.

Conclusion: RMC and CDC strongly express PD-L1 in the majority of cases (12/22), suggesting that these patients may benefit from targeting the PD-L1/PD1 interaction. The absence of MSI in these cancers indicates a different mechanism of PD-L1 upregulation from colorectal carcinomas. Consistent with our previous study that showed frequent activation of (pseudo)hypoxia-induced pathways in RMCs (Human Pathology 2011;42:1979), we describe a case of RMC successfully treated with anti-VEGF therapy.

### Methods

Formalin-fixed paraffin-embedded (FFPE) tissues from 24 patients with either RMC (n=9) or CDC (n=15) were investigated for the expression of PD-1 (TIL) and PD-L1 (neoplastic cells) using automated immunohistochemical methods at a CAP/CLIAcertified lab (Caris Life Sciences, Phoenix, AZ). Antibodies, vendors, and corresponding thresholds were as follows:

| Biomarker | Antibody (Vendor) | Threshold                    |
|-----------|-------------------|------------------------------|
| PD-1      | MRQ-22 (Ventana)  | > 1 TILs/hpf*                |
| 1 חס      | SP142 (Ventana)   | 2+ or 3+ intensity in ≥5% of |
| PD-L1     | SP263 (Ventana)   | malignant cells              |

\* TILs/hpf = tumor infiltrating lymphocytes per high powered field

Other potentially theranostic biomarkers were evaluated by immunohistochemistry (IHC), fluorescence or chromogenic in situ hybridization (FISH or CISH), and/or microsatellite stability (MSI) testing. Next generation sequencing (NGS) was performed when enough tissue was available.

### Results

| Tumor | Median Age<br>(Age Range) | Gender (Male:Female) | Ethnicity*                     |
|-------|---------------------------|----------------------|--------------------------------|
| RMC   | 27 (13-58)                | 9:0                  | AA (7/9) <i>,</i> non-AA (2/9) |
| CDC   | 61 (26-74)                | 13:2                 | NA                             |



| specimen |
|----------|
| RMC#1    |
| RMC#2    |
| RMC#3    |
| RMC#4    |
| RMC#5    |
| RMC#6    |
| RMC#7    |
| CDC#1    |
| CDC#2    |
| CDC#3    |
| CDC#4    |
| CDC#5    |
| CDC#6    |
| CDC#7    |
| CDC#8    |
| CDC#9    |
| CDC#10   |
| CDC#11   |
|          |
|          |
|          |

Tumor

RMC

\*AA – African American NA – Not Available

Table 1 – Demographic information on RMC and CDC specimens. Details on the specimens are shown above. Most specimens analyzed were from male patients, with African-Americans comprising the majority of confirmed RMC (77.8%, 7/9). Four of the AA profiled had the sickle cell trait, two had documented sickle cell disease, and one had an unknown history of either disease.

> Figure 1 – PD-L1 by IHC in RMC and CDC using SP142 antibody. Shown on the left are the number of patients staining positive (blue) and negative (red). Both renal cell carcinomas exhibited staining, with 77.8% (7/9) in RMC and 38.5% (5/13) in CDC.

| SP142 Result         | SP263 Result         |
|----------------------|----------------------|
| Positive (2+/70%)    | Positive (2+/50%)    |
| Positive (2-3+/70%)  | Positive (2+/70%)    |
| Negative (2+/1%)     | Negative (2+/1%)     |
| Positive (2-3+/100%) | Positive (2-3+/100%) |
| Negative (2+/2%)     | Negative (2+/2%)     |
| Positive (3+/20%)    | Positive (2+/10%)    |
| Positive *(3+/90%)   | Negative (0/100%)    |
| Negative (0/100%)    | Negative (0/100%)    |
| Negative (<1%)       | Negative ( <1%)      |
| Negative (<1%)       | Negative (<1%)       |
| Negative (0/100%)    | Negative (0/100%)    |
| Positive (3+/80%)    | Positive (3+, 80%)   |
| Negative (0/100%)    | Negative (0/100%)    |
| Negative (0/100%)    | Negative (0/100%)    |
| Positive (2+/5%)     | Positive (3+/30%)    |
| Positive (3+/100%)   | Positive (3+/100%)   |
| Positive (2+/5%)     | Positive (2+/60%)    |
| Negative (2+/<1%)    | Negative (2+/<1%)    |
|                      |                      |

| Positive     |
|--------------|
| 57.1% (4/7)  |
| 72.7% (8/11) |

 
 Table 2 - Concordance between two
PD-L1 IHC antibody clones. Eighteen RMC and CDC specimens were also stained with the SP263 antibody for comparison with the SP142 antibody. Scores are shown in the figure on the left. Scoring was either positive or negative using the aforementioned threshold. Staining intensity was either 0 (absent), 1+ (weak), 2+ (fair), or 3+ (strong). Percent values correspond<del>s</del> to percent tumor membrane staining. A concordance analysis showed 94.4% (17/18) agreement. \* The sole discordant case RMC#7 had uncharacteristic cytoplasmic staining using SP142 antibody.

> Table 3 – PD-1 by IHC in **RMC, CDC.** Overall, a high percentage of RMC and CDC displayed PD-1 expression, a biomarker for T-cell tumor infiltrating lymphocytes (TILs).

# **Results (continued)**





Figure 2 – Renal medullary carcinoma (RMC) Immunohistochemical images. Shown above are images of a patient with RMC including H&E (A), PD-1 at 20X (B), PD-L1 SP142 at 20X (C), PD-L1 SP142 at 40X (D), and PD-L1 SP263 at 20X (E).





Test/Methodolo MSI (Fragment Analysi ALK rearrangement (F ALK rearrangement (IF MET amplification (CIS

PTEN loss (IHC)

Table 4 – Multiplex testing outside of Next Generation Sequencing (NGS). Additional tests on the cohort are shown above. MSI (microsatellite instability) was not detected. Although no ALK rearrangement was detected by IHC, ALK rearrangement was identified by FISH in one CDC specimen.



SCHOOL OF MEDICINE







**Figure 3 – Collecting duct** carcinoma (CDC) Immunohistochemical images. Shown to the left are images of a patient with collecting duct carcinoma including H&E (A), PD-1 at 20X (B), PD-L1 SP142 at 20X (C), and PD-L1 SP263 at 20X (D).

| У   | Number Tested | Results     |
|-----|---------------|-------------|
| s)  | 6             | 0.0% (0/6)  |
| SH) | 7             | 14.3% (1/7) |
| IC) | 11            | 0.0% (0/11) |
| H)  | 6             | 0.0% (0/6)  |
|     | 9             | 22.2% (2/9) |

# **Results (continued)**

### **RMC and CDC Pathogenic and Presumed Pathogenic Mutations by NGS**

BRCA2, CDKN2A, CHEK2, FH, SMARCB1, TP53

**RMC and CDC Variant of Unknown Significance Mutations by NGS** 

APC, ATM, BRCA1, BRCA2, CDKN2A, CSF1R, ERBB2 (HER2), KIT, KDR, NOTCH1, RET, SRC, TP53

Table 5 – Analysis of RMC and CDC using Next Generation Sequencing. Pathogenic (i.e. tumorigenic), presumed pathogenic, and variant of unknown significance results are shown.

treated with anti-VEGF therapy (*Lipkin 2015*).

A 27 year-old AA male with metastatic renal medullary carcinoma (diagnosed in July 2013) was treated with induction PCG (paclitaxel + cisplatin + gemcitabine) following an earlier left radical nephrectomy. Given the tumor's rarity and no standard of care, genomic profiling was requested, which showed PTEN deficiency and low protein expression of RRM1, implying a potential benefit to mTOR inhibitors and gemcitabine, respectively. Patient was then administered everolimus (in December 2013) and maintained complete remission (CR). Secondary to elevated ALT and AST and, later, PD in June 2014, everolimus was discontinued. Since this time, the patient has been treated with gemcitabine and, later, paclitaxel plus bevacizumab. On a recent CT scan in December 2015, the patient continued to show no identifiable disease.

### Conclusions

- of immune checkpoint inhibitors in these diseases.
- diseases.
- therapy despite lack of VHL or KDR mutations.
- malignancies.

### References

- therapy". Cancer Cell. 27:450-461.
- medullary carcinoma with loss of PTEN expression". Cancer Biol Ther. 16(1):28-33.
- by comprehensive genomic profiling". Eur Urol. doi:10.1016/j.eururo.2015.06.019.



# Washington University in St.Louis



# Update on case report of a patient with renal medullary carcinoma successfully

PD-1 and PD-L1 expression detected in both RMC and CDC implies potential utility

A multiplatform approach can identify various potential targets in these orphan

Patients with RMC and sickle cell disease may benefit from anti-angiogenic

Studies with larger cohorts and treatment outcomes are warranted in these rare

Topalian, SL, DM Pardoll, et al. (2015). "Immune checkpoint blockade: a common denominator approach to cancer

Lipkin, J.S., M. Joshi, et al. (2015). "Therapeutic approach guided by genetic alteration use of MTOR inhibitor in renal

Pal, S.K., J.S. Ross, et al. (2015). "Characterization of clinical cases of collecting duct carcinoma of the kidney assessed